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HEAT TRANSFER IN DIFFERENTIALLY HEATED 
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ABSTRACT 
The flow development and heat transfer in a differentially heated cavity containing a non-Newtonian fluid 
is studied using CFD techniques. Investigations are made for a fluid obeying a power-law type behaviour, 
for a nominal Rayleigh number of 105. Both dilatant and pseudoplastic regimes are considered and the 
Nusselt number is obtained for a range of power-law index values. The results, given in a graphical and 
tabular form, suggest that deviations from Newtonian stress-strain behaviour can lead to large changes 
in overall heat transfer. These changes are due to the behaviour of the wall boundary layers. In the dilatant, 
or shear-thickening regime, the isothermal wall layers are thick and slow-moving; as a consequence, 
buoyancy induced flow affects the whole of the cavity volume. In contrast, the pseudoplastic (or 
shear-thinning) regime leads to thin, fast-moving wall layers whose effect does not propagate to the core 
of the cavity which remains stagnant. This behaviour, which is directly attributable to the local value of 
the fluid viscosity, causes the average Nusselt number to decrease with the power-law index, n. Pseudoplastic 
fluids are therefore better at conducting heat than Newtonian fluids, and conversely dilatant fluids are worse. 

The information contained in this paper is of general interest to workers in heat transfer, but is more 
specifically relevant to researchers in non-Newtonian fluids. Example applications include biotechnology, 
where close temperature control of bio-cultures in enclosed vessels is required, the food processing industry, 
the metals casting industry and areas where heat transfer in fine suspensions is required. 
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NOMENCLATURE 
a 1 Influence coefficient, cell ne ighbour i v y-direction velocity component 
Cp specific heat ( J /Kg K) Vф linearised source boundary value 
Cф linearised source coefficient x horizontal direction coordinate 
D cavity dimension (m) y vertical direction coordinate 
e i j strain rate tensor 
g gravity vector (m/s2) Greek symbols 
G geometric factor and dissipation func- β coefficient of volume expansion 

tion y shear strain rate ( s - 1 ) 
k consistency coefficient ( N s n / m 2 ) λ fluid conductivity ( W / m K ) 
n power-law index µ dynamic viscosity (kg/ms) 
p pressure (Pa) v kinematic viscosity (m2/s) 
Ra Rayleigh number ( gβΔTD3σ/v2) p density (kg/m3) 
S source term in conservation equation σ Prandtl number ( = µCp/λ) 
t time (s) Τ0 yield stress (N/m2) 
T temperature (deg C) Τ shear stress (N/m2) 
u x-direction velocity component 4> general conserved variable 
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INTRODUCTION 

The flow and heat transfer in a differentially heated cavity has been the subject of many 
investigations within the CFD community. Apart from the obvious practical application (the 
double-glazing example), this problem has been used as a benchmark for testing the accuracy 
of numerical procedures, differencing schemes and even turbulence models. 

The author and his colleagues have contributed in a small way to the plethora of papers on 
this subject, in a study dealing with a square cavity with differentially heated vertical walls, for 
a range of Rayleigh numbers between 103 and 1016 (Reference 2). Jones and de Vahl Davis and 
Jones produced an early benchmark solution2,3,4 which many sought to reproduce. Notable in 
this area is the work of Ostrach, who published a review of the subject in Reference 5. Rather 
demanding three-dimensional computations have been presented by Mallinson et al.6, for cavities 
of various aspect ratios, and more recently by Fusegi et al.7who in addition to convection and 
diffusion, included thermal radiation in their computations. In most of these calculations the 
authors have used constant material properties (including density), and a Boussinesq 
approximation for the buoyancy source driving the flow. However, in some cavity problems the 
exact prescription of material properties is important, as demonstrated by Reizes et al.8, for the 
case where the temperature range straddles the density extremum of water. Non-orthogonal grid 
cavity calculations have been presented by some authors (e.g. Maliska et al.9) in an attempt to 
reduce numerical false diffusion. An important class of heated cavity problems involves the onset 
of instability that leads to a fluctuating temperature field. This situation has been studied 
successfully by Le Quere et al.10, for a range of cavity aspect ratios. 

In contrast to the research activity mentioned in the previous paragraph, the subject of heat 
transfer in a differentially heated cavity containing non-Newtonian fluids has been poorly 
researched. This cannot be because the subject is not scientifically stimulating. For example, 
some recent work has appeared in the literature11 that demonstrates quite incredibly that the 
flow can be made to move against gravity in a cavity containing a suitably selected viscoelastic 
fluid. In fact a literature search will show that the numerical study of heat transfer in 
non-Newtonian fluids in general is only covered by a handful of publications. Non-Newtonian 
fluids are however present in a vast range of industries and the problem of what heat transfer 
coefficient one is to use in heat exchange problems involving such fluids is of great practical 
importance. Example applications can be found in the biotechnology, biomedicine, food processing 
and plastic manufacture industries, the petroleum and sewage treatment sectors, the manufacture 
of nylon fibres, paper, etc. The numerical modelling of complex non-Newtonian flows with heat 
transfer is now possible, using standard finite-volume, or finite-element techniques12-15. 

The objective of this study is to determine, numerically, the heat transfer coefficient and 
Nusselt number in a square cavity with differentially heated vertical walls containing a viscous 
non-Newtonian fluid whose rheology can be characterised by a power-law relation. 
Computations are performed for a constant nominal Rayleigh number of 105, which is in the 
laminar regime. Both dilatant (or shear-thinning) and pseudoplastic (shear-thickening) fluids 
are simulated by suitably varying the power-law index in the rheology model. The results are 
compared with the Newtonian case that is used as a benchmark. 

In the chapters that follow, the test-case modelled is first described in detail, the mathematical 
model used is then explained, the results of the computations are described and the salient 
features of this kind of flow highlighted. The main conclusions of this work and suggestions for 
future study complete the main body of the report, followed by a list of references and figures. 

THE PROBLEM CONSIDERED 

The physical problem simulated concerns a square cavity, which is differentially heated along 
its vertical walls. The horizontal top and bottom walls are adiabatic. The cavity is assumed to 
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be of infinite depth in the third dimension. The temperature difference across the cavity is 20°, 
with the left wall being hot and the right wall being cold. 

The dimension, D, of the cavity sides was chosen to give the desired Rayleigh number. 
Therefore, for Ra equal to 105, D = 0.0363 m. Laminar wall friction is assumed to apply on all 
walls. Heat transfer through the walls causes density changes to the fluid in the cavity, and leads 
to buoyancy driven recirculation. The resulting flow is assumed to be steady and, at the chosen 
Rayleigh number, laminar1. The fluid within the cavity is assumed to obey a power-law 
stress-strain relationship. 

FLOW EQUATIONS 

The equations describing the flow are governed by the laws of conservation of mass, momentum 
and energy. In addition constitutive relationships are needed to close these equations; these 
describe point properties of the fluid such as density, viscosity, conductivity etc. and their 
relationship to the problem dependent variables. The conservation equations can be expressed 
in a generalised form that is amenable to algorithmic treatment and is common to most CFD 
techniques. Hence, the transport of a conserved variable ф, is given in the following form: 

When ф is equal to 1, the mass continuity equation is returned, whilst for momentum the three 
velocity components (u, v, w) appear and enthalpy is used to describe thermal energy transport. 
It will be noted that the pressure does not appear independently as the subject of a conservation 
equation. It is however used in an iterative correction scheme known as SIMPLEST16 to ensure 
momentum and mass conservation is ultimately satisfied simultaneously. 

The diffusion coefficient Γ appearing in (1), represents the influence of diffusion in the transport 
of ф. In non-Newtonian flows, Γ becomes the fluid apparent viscosity, which is a function of 
local shear rate and possibly other problem variables. 

In two-dimensional Cartesian form, equation (1) expands to the following: 
Continuity 

+ (pµ) + (pv) = 0 (2) 

x-Momentum 
p = – – + p g x β ( T - T t r e f ) (3) 

v-Momentum 

P =– – + p9,β(T - Tref) (4) 

where p is the density and τij is the dynamic stress tensor. Also, 
τij= – µeij 

where µ is the viscosity and eij the rate of strain tensor. The components of τij and eij are readily 
available in the literature, e.g. Reference 17. 

To compare against the benchmark results of References 2 and 3, the density was presumed 
to be constant in this calculation. The buoyancy force in the momentum equations is represented 
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instead by the Boussinesq approximation (last term in equations (3) and (4)), which substitutes 
density variations with variations about the reference temperature, multiplied by the coefficient 
of thermal volume expansion, β. Gravity is then given by the vector components gx and gy. This 
approximation is a reasonable one to adopt, provided the temperature range about the mean 
is small, as is true here (see Markatos1). 

Energy equation 
pCp =λ +µG (6) 

where X is the conductivity of the fluid and Cp the specific heat. 
The last term on the RHS of (7) represents heating due to viscous dissipation of energy. The 

quantity G represents the second invariant of the rate of strain tensor, eij and it is also known 
as the dissipation function. 

2 
G = 2 + (7) 

Representation of the viscosity 
In Newtonian fluids, the viscosity appearing in (5) above is, of course, a constant. However, 

in the case considered here, this is not true. The dynamic stress tensor and the strain rate are 
related to each other non-linearly, in a way that is often difficult to determine experimentally. 
It is then useful to talk of the apparent viscosity of the fluid, defined as the ratio of shear stress 
to shear strain. Provided this is independent of the amount of deformation and its duration, 
then following Metzner's18 classification the fluid is called purely viscous. Purely viscous fluids 
are considered in this investigation, namely, (a) shear thinning (pseudoplastic), (b) shear 
thickening (dilatant). For the cases described, the generalised Bingham, or Herschel-Buckley17 

equation is adopted, i.e.: 
τ = τ0 + kyn (8) 

where 
Τ is the shear stress (N/m2) 
Τ0 is the yield stress (N/m2) 
k is the consistency coefficient (Nsn/m2) 
n is the consistency index, and 
y is the shear strain rate (s - 1) 

For plastics and other very viscous fluids, the consistency index is usually a function of 
temperature. An Arrhenius expression was used in Pericleous and Akay12 to represent this 
dependence. Hence, 

k = k0 exp (9) 

where k0 is constant, ΔE the flow activation energy (cal/mole), Rc the gas constant and To the 
reference temperature. 

Equation (8) reduces to the power law relation when the yield stress is zero. Then, if n = 1 
it represents a Newtonian fluid, n < 1 a pseudoplastic, and n > 1 a dilatant non-Newtonian fluid. 
Figure 1 shows computed velocity profiles in a circular pipe, when there is no yield stress. The 
Newtonian laminar parabolic profile becomes broader when n = 0.5, and conversely elongated 
when n = 1.5. Figure 2 shows what happens when a finite yield stress y = 10 N/m2 is introduced. 
A plug flow region is predicted in the central region of the pipe, where the fluid behaves as a 
translating solid or alternatively as a fluid of infinite viscosity. For this simple example, computed 
results agree perfectly with analytical solutions (see also Pericleous and Patel15). 
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The apparent viscosity, µapp, used in the computations is derived from equation (8), after 
dividing through by y. Hence, 

µapp = = + ( n - 1 ) (10) 

This equation becomes ill-conditioned, since as y→0, µ a p p→∞. Numerical problems may arise 
in an iterative computational scheme, due to a large and very abrupt change in apparent viscosity 
between the yielding and non-yielding regions of the fluid. To avoid these, the apparent viscosity 
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is derived from the following equation: 

(11) 

where the starred quantity refers to the previous iteration value. However, the calculated shear 
stress and strain rate, must still satisfy equation (10), not (11). Hence, following Maeda13 the 
following iteration scheme is adopted: 

(a) Use the stored viscosity to evaluate the tentative velocity field, by solving equations (1)–(4). 
(b) Evaluate the resulting strain rate, from (7) (y = G0.5). 
(c) Calculate the "pseudo-strain rate", y*, from (10). 
(d) Calculate the new apparent viscosity value, from (11) and repeat steps (a)–(d). 

This scheme works particularly well when the initial yield stress is finite. 
Boundary conditions are needed for problem closure. These occupy the source term Sф in 

RHS of the equations. The appropriate sources for the heated cavity are given in Table 1. 
Reference property values are then evaluated at the average temperature, Tref = 0, as shown in 
Table 2. 

Table 1 Boundary conditions 

Boundary/variable 

Hot wall; x = 0 
Cold wall; x = D 
Top wall; y = D 
Bottom wall; y = 0 

T 

T= +10 
T = – 1 0 
dT/dy = 0 
dT/dy = 0 

u 

u = 0 
u = 0 
ΤW= –µdu/dy 
ΤW= –µdu/dy 

V 

ΤW = – µdv/dx 
ΤW = – µ dv/dx 
v = 0 
v = 0 

Table 2 Reference properties 

Property 

Density, p 
Prandtl no, σ 
Nominal kinematic viscosity, v 
Volume expansion coefficient, β 

Value 

1.207 
0.71 
1.56 x 1 0 - 5 

1/273 

Table 3 Summary of findings 

Run 
no. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Index, n 

cond. 
0.1 
0.25 
0.5 
0.75 
1.0 
1.25 
1.5 
1.75 
2.0 

Kmax (m/s) 

0.0 
0.091 
0.082 
0.069 
0.054 
0.042 
0.033 
0.028 
0.024 
0.022 

σx (m) 

_ 
0.0008 
0.0008 
0.0011 
0.0017 
0.0025 
0.0030 
0.0036 
0.0041 
0.0047 

y(y = D/2) 

0.0 
113.75 
102.50 
62.73 
31.76 
16.80 
11.00 
7.78 
5.85 
4.79 

Nusselt no. 
<Nu> 

1.0 
8.04 
7.14 
6.40 
5.47 
4.56 
3.93 
3.50 
3.18 
2.95 

Qwall(W) 

5.304E - 4 
4.266E - 3 
3.790E - 3 
3.400E - 3 
2.900E - 3 
2.418E - 3 
2.086E - 3 
1.854E - 3 
1.690E - 3 
1.568E-3 
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SOLUTION PROCEDURE 

The conservation equations are solved in a discretised form on a Cartesian solution grid. The 
problem dependent variables and fluid properties are assumed constant within a grid cell. A 
staggered convention is used, whereby all scalars are located in the cell centre while velocities 
reside on the appropriate cell face. Integration of the PDE's (1)-(6) over the elemental control 
volumes defined by each cell leads to a set of finite difference equations, or FDE's. These are 
linear expressions relating the variable Φ to all its neighbours in space and its previous time 
value through influence coefficients, which provide convective and diffusive links. Hence, 

Φ = (12) 

The terms CΦ, and VΦ represent the coefficient and value of the linearised source SΦ that can be 
expressed as: 

SΦ= CΦ (VΦ – Φ)G (13) 
where Φ is the resident cell value and G a geometrical factor. 

Although equation (12) is linear in form, the influence coefficients of variable Φ, are not 
constants but functions of the other variables solved. This means the solution has to be procured 
iteratively. Such an iterative procedure is embodied in the code PHOENICS20, used in this 
simulation, in the form of the SIMPLEST16 algorithm, in which a guess-and-correct approach 
is followed to ensure that once a velocity field has been guessed, pressure corrections lead to 
continual adjustment of this field until continuity is satisfied and error residuals in all dependent 
variable equations fall below predefined thresholds. 

There are important differences between SIMPLE, the original pressure correction scheme 
by Patankar and Spalding19 and Spalding's SIMPLEST; the latter has better convergence 
characteristics for this type of problem, where both convective and diffusive contributions to 
the momentum equations are important. The differences between the two techniques are discussed 
in Reference 1 and in greater detail in Reference 16. A hybrid interpolation scheme is adopted 
in the formulation of the influence coefficients in equation (12). 

The iteration process is deemed to be converging when the residuals in successive sweeps are 
diminishing. The speed with which convergence is achieved depends on many factors, including 
the extent to which variables influence each other and the realism of the initial guessed fields. 
Convergence control is exerted via the use of an inertial under-relaxation term, which acts as 
a false time step in the equations. Inertial under-relaxation can be thought of as an additional 
source term S, say, which appears in each FDE. Therefore, 

Sr = (Φ*–Φ)Vol (14) 

where Φ* represents the value of Φ at the previous iteration, p is the fluid density, δtf the false 
time step and Vol the cell volume. It is evident by examining equation (12), that as the coefficient 
of this source becomes large (by making δtf small) the value of Φ will remain close to that at 
the previous iteration, Φ*. Furthermore, as the solution converges Φ→Φ* and Sr→0, ensuring 
that the relaxation term does not affect the final solution. 

Typically 300 iterations of the coupled set of equations were necessary to reach convergence 
for each run performed, starting from uniform initial conditions. This number could be 
significantly reduced, if the computation started from the stored solution of a parametrically 
related previous run. No particular convergence problems were encountered and the residual 
errors diminished monotonically in all the cases presented here. Slightly heavier relaxation was 
necessary in the pseudoplastic set of runs, for best convergence. The reason for this, as seen in 
the results, is due to an increase in the local Rayleigh number characterising the wall layers, 
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due to shear thinning. As noted in our previous work on Newtonian cavities1, convergence 
becomes progressively more difficult to achieve as the Rayleigh number increases, because the 
coupling of the energy and momentum equations becomes stronger. 

A moderately fine 40 x 40 grid was used for all the simulations. The grid was made finer 
close to the walls and coarser in the middle of the cavity, following the practice of Reference 1. 
The code PHOENICS was used for all the computations presented. The author developed a 
Fortran attachment to PHOENICS, that contains the non-Newtonian model. 

RESULTS AND DISCUSSION 

Table 3 gives a list of the cases and a summary of the main findings. It includes the controlling 
parameter n, in column two, the maximum vertical velocity in the boundary layer (at D/2) its 
distance from the wall, the corresponding strain-rate, the average Nusselt number and the overall 
heat transfer through the cavity. Run no. 5 in the table corresponds to the Newtonian case. 

It is immediately obvious from the table, that as the power-law index increases from 0.1 to 
2.0, there is a corresponding decrease in the amount of thermal energy transferred across the 
cavity. It also appears from the table, that the maximum vertical velocity and strain rate diminish 
as n increases and the boundary layer thickens. 

The average Nusselt number, defined as <Nu> = h,D/λ, is the quantity of interest from the 
engineering point of view, as it describes the convective heat transfer coefficient, hc, for the rate 
of heat flow across the cavity. Column seven in Table 3 gives the total heat transfer for all cases 
studied, and for a hypothetical situation where only conduction is allowed in the cavity. Column 
six then, gives the average Nusselt number which has been deduced from the following equation: 

<Nu> = Qwall /(λΔT) (15) 
The Nusselt number for conduction only, has a value of 1.0, by definition. Values greater than 
one denote the convective contribution to heat transfer. As noted in the previous paragraph, 
heat transfer decreases with the power-law index n, and as a consequence of equation (15), the 
average Nusselt number also decreases. The value of <Nu> for n = 1.0 agrees well with the 
benchmark solutions given in the literature (e.g. 4.519 in de Vahl Davis3, compared to 4.56 
here). The dependence of the Nusselt number on the power-law index is also shown in Figure 3. 

Detailed results are given graphically, in Figures 4-10. The figures containing contours are 
grouped in sets of five (in order of diminishing n) and depict velocity vectors and temperature 
contours. Figures 4(a) to 4(e) first show velocity vectors in the cavity. The general clockwise 
recirculation induced by buoyancy can be seen quite clearly in all cases, with the hot thermal 
layer flowing upwards and counteracted by the cold thermal layer which flows downwards along 
the opposite wall. The flow field shows rotational symmetry as expected. There are large changes 
in the thickness of the wall boundary layers, accompanying change in the power-law index. The 
boundary layers become thinner (and faster), as the fluid changes from dilatant to Newtonian 
and then to pseudoplastic. At the same time, as the flow activity concentrates close to the walls, 
the low-velocity central region of the cavity expands, until at the highly shear-thinning n = 0.1, 
the whole of the central region becomes stagnant. Observing more closely the central region, we 
note that the initial vortex of Figure 4(a), becomes elongated and breaks into two distinct vortices 
which move along the cavity diagonal, towards the downstream end of the thermal boundary 
layers (Figures 4(b) and 4(c)). Figure 4(c) corresponds to the Newtonian result, and the flow 
behaviour is familiar to us from previous references1–4. As the fluid becomes pseudoplastic, the 
two vortices move further along the diagonal, until at the extreme values of the index, n < 0.25, 
the flow behaviour changes significantly. Separation regions develop at the downstream corners 
of the adiabatic walls, containing counter-clockwise vortices. At the same time, a very weak 
central vortex appears; this is accompanied by a shift in the location of the diagonal vortices, 
which suddenly switch diagonal. 
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Figures 5(a) to 5(e) show the corresponding temperature field. Contour lines are given at one 
degree intervals. In pure conduction, one would expect temperature contour lines to be parallel 
to the isothermal walls of the cavity, since there is no heat transfer at the top and bottom walls. 
Convection modifies this tendency, as hot fluid carried upwards from the heated wall mixes 
with lower temperature fluid towards the top of the cavity, and in reverse cold fluid is carried 
downwards along the cold wall, to mix with higher temperature fluid towards the bottom of 
the cavity. As a result, the contour lines approach the horizontal in the central region of the 
cavity, until the temperature gradient actually changes sign. This change of sign induces vorticity 
in the flow which resists the clockwise rotation of the fluid, leading to the elongation and 
break-up of the central vortex. As in the vector plots, the extent of the central region behaviour 
expands with diminishing power-law index. Figure 5(c) corresponds to the Newtonian case, 
where the central region now shows evidence of stratification, with colder, heavier, fluid lying 
in the bottom half of the cavity and lighter, warmer fluid occupying the top half. As the fluid 
becomes more pseudoplastic this trend continues. In addition, the temperature gradients close 
to the isothermal walls become steeper, as the boundary layers becoming thinner. The 
stratification is maintained by thin discharge jets emanating from the hot and cold walls which 
now penetrate a long way along the isothermal walls. 

The overall flow behaviour is perhaps best seen in the streamline plots in Figures 6(a)-(6f), 
which in this case correspond to n = 0.25,0.5,0.75,1.0,1.25 and 1.75 respectively. The break-up 
of the initial central vortex and the separation of the two successors as n diminishes is the most 
obvious feature of these plots. At the same time fluid activity concentrates more-and-more 
towards the walls as seen by the concentration of the stream function contour lines. This is 
because the viscosity becomes progressively higher in the central region and lower close to the 
walls. Figure 6(a), for n = 0.25 shows the two effects commented upon earlier, i.e. the appearance 
of a weak central vortex, accompanied by a shift of the diagonal vortex-pair position. 

The viscosity behaviour can be best understood with reference to Figure 7(a) and 7(b), which 
depict line plots of viscosity ratio (µ/k0) along the vertical and horizontal cavity mid-planes 
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respectively, for various values of the power-law index n. The ratio is of course constant for the 
Newtonian case (n = 1.0). Generally speaking, close to the wall, the pseudoplastic fluid has a 
viscosity ratio which is less than one, and conversely the dilatant fluid a viscosity ratio which 
is substantially greater than one; this trend is more pronounced at the extremes of the power-law 
index. In the cavity core, the viscosity is at a maximum in the pseudoplastic fluid and at a 
minimum in the dilatant. This behaviour is a direct consequence of the power-law model used, 
and it reflects the strain-rate variation in the cavity. As the strain-rate approaches zero, the 
viscosity becomes very large if n — 1 < 0 and small if n — 1 > 0. 

The viscosity plots also help to explain the overall flow behaviour in the cavity. In the dilatant 
regime, the viscosity tends to be highest in regions of fluid activity. Since the Rayleigh number 
is inversely proportional to the viscosity, this implies that the local value of the Rayleigh number 
is lower than the nominal. Since the overall behaviour of the cavity is governed by what happens 
in the high activity regions (i.e. the boundary layers) the cavity behaves in some respects like a 
Newtonian cavity of lower Rayleigh number. Quite the opposite happens in the pseudoplastic 
regime; there, the viscosity is low in the boundary layers, hence the local Rayleigh number is 
high. The pseudoplastic cavity therefore behaves like a Newtonian cavity, of higher Rayleigh 
number. Inspection of the velocity and temperature plots and comparison against Newtonian 
results (for example, Reference 1) quickly demonstrates this analogy. 

The overall heat transfer (given by the Nusselt number) also follows the analogy suggested 
above. Heat transfer increases with decreasing power-law index, in the direction of increasing 
local Rayleigh number. This is because the rate of fluid transport in the boundary layers (hence 
the heat convected) increases as the power-law index diminishes, as the boundary layers become 
thinner but faster. The velocity and thermal boundary layers at the isothermal walls can be seen 
in Figures 8 and 9 showing profiles at the cavity horizontal mid-plane. Figure 10 shows the 
corresponding horizontal velocity along a vertical mid-plane. 
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CONCLUSIONS 

This work demonstrates the use of CFD techniques to the problem of natural convection in a 
differentially heated cavity, containing a non-Newtonian fluid. The fluid obeys a power-law type 
stress-strain relationship. 

Parametric computations were performed for a range of power-law index values covering both 
dilatant and pseudoplastic flow regimes and the results were compared against the Newtonian 
benchmark solution, at a Rayleigh number equal to 105. The results of the simulations showed 
some interesting trends. Increasing the power-law index leads to a significant reduction in the 
average Nusselt number of the cavity. Similarly, the corresponding flowfield behaviour resembles 
visually that which would have been obtained at a lower Rayleigh number in a Newtonian fluid. 
In Newtonian flow, this would indeed imply a reduction in heat transfer. 

A flow feature, which has not been observed before, concerns the appearance of a triple vortex 
system in the cavity core, for highly shear-thinning fluids. 

The lack of experimental data in the literature and the absence of similar numerical solutions 
prevents direct comparison of the results and hence quantitative assessment of accuracy. However, 
where analytical solutions exist (in isothermal cases) the method agrees well with theory, and 
the viscosity varies in accordance with the model prescribed. Further work is now in progress, 
to extend the method to time-dependent fluids. 
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